
Math 4200
Monday September 28  2.1-2.2 recap, and technical discussion of "connected" vs. "path 
connected".

Announcements:  Modified hw5 and early view of hw6!

Warm-up exercise



hw5  Due Friday October 2 at 11:59 p.m.

Do the following problems using the Theorems from section 2.1-2.2.  These include the
FTC Theorem 2.1.7;  Cauchy's Theorem 2.2.1 and 2.2.3;  the Deformation Theorem
2.2.2 which we also call the Replacement Theorem in class; the Antiderivative Theorem 
2.2.3 which we make rigorous in section 2.3.

2.2 :  5, 11.
2.3   7, 10. 

hw6  Due Wednesday October 7 at 11:59 p.m.  (Section 2.3 is potentially on the Friday 
October 9 midterm.)

Do the following problems using the Theorems and definitions from section 2.3.  These 
include the definitions of homotopies with fixed endpoints 2.3.6; and homotopies of 
closed curves 2.3.7; the precise (homotopy) definition of simply connected 2.3.8; the 
homotopy versions of the Deformation Theorem 2.3.12 and Cauchy's Theorem 2.3.14;  
the rigorous Antiderivative Theorem 2.2.3 which is stated in section 2.2 but made rigrous
in section 2.3.

2.3 1, 3, 5, 6, 7abc (This week show that each  is homotopic to a point (contractible) in
the domain of analyticity for f , so each integral is zero.), 9.  In 9b write down a 
homotopy from the given curve to the standard parameterization of the unit circle, in 

\ 0 , to justify your work.

w6.1  Positive distance lemma:  Prove that if K  is compact, and if K O , where 
O  is open, then there exists an 0 such that for each z K , D z; O .  This is 
equivalent to Distance Lemma 1.4.21 in the text.  See if you can construct a proof 
without looking there first, but in any case write a proof in your own words.  Recall that
there are two definitions of compact, which are equivalent in n :

(i)  K n  is compact if and only if every open cover of K  has a finite subcover.   
or
(ii)  K n  is compact if and only if every sequence in K  has a subsequence which 
converges to a point in K .

(In n  another characterization of compact is closed and bounded, but this 
characterization does not generalize to metric spaces.)



Review and Summary of Chapter 2 Theorems so far, for contour integrals.  I'll use the 
text numbering and we'll briefly recall why each theorem is true.

Theorem 2.1.7  (Fundamental Theorem of Calculus)
Let A  open, f : A  continuous, : a, b  a piecewise C1curve.  If  
f  has an analytic antiderivative in A , i.e. F = f , then complex line integrals only 
depend on the endpoints of the curve , via the formula

f z  dz  F b F a

Theorem 2.1.9  (Path Independence Theorem)  
The following are equivalent, for f : A  continuous, where A  is open and connected:

     (i)  F : A  such that F = f  on A  

     (ii)  Contour integrals are path independent, i.e. for all choices of initial point P  and
terminal point Q in A ,

0

f z  dz =

1

f z  dz

whenenver 0, 1  are piecewise C1  (continuous) paths that start at P  and end at Q.  



Theorem 2.2.1  (Cauchy's Theorem)  Let  be a simple closed piecewise C1  contour, 
and let A  be the bounded region inside of it.  If f z  is C1  and analytic in (a domain 
containing the closure of) A , then

f z  dz = 0.

Theorem 2.2.2  (Replacement Theorem).  The text also calls this a preliminary version of
the deformation theorem, which we discuss precisesly in section 2.3.

Let  1, 2, ... n  be non-overlapping simple closed curves such that  is a simple closed

curve with f  analytic in the region between  and 1, 2, ... n  as indicated below.  
Orient all contours in the counterclockwise definition.  Then 

f z  dz = 
j = 1

n

j

f z  dz  



Example: (similar to some hw for this week)  Let  be the circle of radius 2 centered at 
the origin (and oriented counterclockwise as usual).  Find

z
z2 1

 dz .



Combining Cauchy's Theorem and the Path Independence Theorem yields the result we 
were in the midst of proving at the very end of Friday's class: 

Definition  Let A  be an open, connected domain. Then in section 2.2, A  is called simply 
connected  if it contains no holes.  Another way to think about simply connected, which 
is closer to the precise definition in section 2.3, is that A  is simply connected means that 
every closed contour in A  can be continuously deformed into a constant (point) contour 
without ever leaving A .

Theorem 2.2.5 (Antiderivative Theorem)  If A  is open and simply connected.  Let 
f : A  be analytic and C1 .  Then f  has antiderivatives F , unique up to additive 
constants.

proof:  We'll use Cauchy's Theorem to explain heuristically why the path-independence 
condition (ii) of Theorem 1 holds.  Thus antiderivatives exist, and one way to express 
them is via contour integrals as in the previous discussion: 

F z =

z0z

f  d

Notice how we will use the "no-holes" idea of simply-connected.  This explanation is not
completely rigorous, but we'll fix that lack of rigor in section 2.3 by defining simply 
connected more carefully, and also by using different techniques that don't depend on 
Greens' Theorem and our heuristic pictures of what contours look like.



Example (also relates to alternate way of doing one of the hw exercises due last Friday) 
 Which of the domains below are connected?  Which are simply connected?  Discuss 
whether it is possible to define log z as an analytic (single-valued) function on each of 
the domains:



Appendix:  Connected domains, path connected domains, simply connected domains:  
Some Math 3220/Chapter 1.4 analysis background material we need now:

Recall that a domain A  is called connected iff there is no disconnection of A  into 
disjoint (relatively) open and non-empty subsets U, V  i.e. such that

A = U  V
 U V = .

If we restrict to open domains A , then subsets U, V  that are relatively open are actually 
open.  

There is a related definition:
Definition  A subset A  is called path connected iff P, Q A , there exists a 
continuous path : a, b A  such that a = P, b = Q.

Theorem  Let  A  be open.  Then A  is connected if and only if A  is path connected.
 Furthermore, if A  is connected then there are piecewise C1  paths connecting all 
possible pairs of points in A .  (Analogous theorem holds in n .)
proof:  ⇒ :  Let A  be connected and open.  We will show it is path connected, with 
piecewise C1  paths.  Pick any base point z0 A .  Define U  to be the set of points that 

can be connected to z0  with a piecewise C1  path.  U  is non-empty since D z0; r U  
as long as r is small enough so that the disk is in A .  In fact,  for all z D z0; r  we 
can use the straight-line paths

t = z0 t z z0 ,    0 t 1
to connect z0  to z.  



The proof that U  is open is analogous:  Let z U  and let  be a piecewise C1  path 
connecting z0  to z.  Then for w D z, r A  and 

1 t = z t w z ,    0 t 1

the combined path 1  is a piecewise C1  path connecting z0  to w.  Thus U  is open.

But the complement V A U  is open by a similar argument:  If V  is non-empty, let
z1 V , D z1; r A .  Then D z1, r V  as well, since if z U D z1; r  there

is a piecewise C1  path  from z0  to z, and letting 

2 t = z t z1 z ,    0 t 1,

the path 2  would connect z0  to z1 .  Thus, since A  is connected, we must have that 
V = A U  is empty.



path connected implies connected:  
Let A  be path connected.  Let A = U  V  with U, V  open, U  non-empty, and 
U V = .  We will show V  is empty.  If not, pick P U, Q V , and let   

: a, b
be a continuous path connecting P  to Q, i.e. a = P, b = Q.  Let T a, b  be 
defined by

T sup t a, b   a, t U

Because U  is open, T a.  Because V  is open, T b.  But if a T b then T  is
in neither U  nor V :  If T U  then by continuity and U  open, there exists 0 so
that T, T U , hence a, T U , contradicting the definition of T .   
Similarly, if T V , continuity of  and V  open implies there exists 0 so that 

T , T V , another contradiction.  Thus T  can't exist, and V  must be empty.


